首页>方案>比例的意义课教案(实用21篇)

比例的意义课教案(实用21篇)

作者:MJ笔神

教学工作计划可以帮助教师合理安排每天的教学内容和活动,提高教学效率。想要了解如何制定教学工作计划吗?不妨看看这些范文,或许会给你带来灵感。

《比例的意义》教案

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

二、探究新知。

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

2、教学p42例3。

(1)引导学生观察上表内数据,然后回答下面问题:

a、表中有哪两种量?这两种量相关联吗?为什么?

b、水的高度是否随着底面积的变化而变化?怎样变化的?

d、这个积表示什么?写出表示它们之间的数量关系式。

(2)从中你发现了什么?这与复习题相比有什么不同?

a、学生讨论交流。

b、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的'量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)。

三、巩固练习。

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

四、全课小节。

这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习。

p45~46练习七第6~11题。

《正比例的意义》教案

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律、

启发引导法。

自主探究法。

课件。

一、定向导学(5分)。

1、已知路程和时间,求速度。

2、已知总价和数量,求单价。

3、已知工作总量和工作时间,求工作效率。

4、导入课题:今天我们来学习成正比例的量。

5、出示学习目标。

2)能根据正比例的意义判断两种量是不是成正比例。

二、自主学习(8分)。

自学内容:书上45页例1。

自学时间:8分钟。

自学方法:读书法、自学法。

自学思考:

1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

y/x=k(一定)。

(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米,225立方厘米的水有9厘米。

2、归类提升。

三、合作交流(5分)。

1、正比例图像是什么样子的?

2、完成46页做一做。

3、各组的b1同学上台讲解。

四、质疑探究(5分)。

1、第49页第1题。

2、第49页第2题。

3、你还有什么问题?

五、小结检测(8分)。

1、什么是正比例关系?如何判断是不是正比例关系?

2、检测:49页第3题。

六、堂清作业(9分)。

练习九页第4、5题。

《比例的意义》教案【】

教学内容:比例的意义和基本性质(省义务教材第十二册)。

教学目标:1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

2、利用比例知识解决实际问题。

3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学过程:

一、谈话导入,创设情境:

我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

二、自主探究,学习新知。

1、8厘米。

出示。

6厘米。

4厘米。

3厘米。

(1)根据表中给出的数量写出有意义的比。[生汇报]。

(2)哪些比是相关联的?[生说,师板书]。

(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。

教师并指出这些式子就是比例。

2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。

3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

4、写出比值是1/3的两个比,并组成比例。

(二)教学比例的基本性质。

1、比例和比有什么区别?

2、认识比例的各部分。

(1)让学生自己取。

(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。

外项,中间的两项叫做比例的内项。

板书:8:6=4:3。

内项。

外项。

(3)让学生找出自己举的比例的内外项。

()。

12。

2

()。

=

(4)找出分数形式比例的内外项位置又是怎样的?

3、出示【启迪学生思维,展开审美想象】。

(1)这个比例已知的是哪两项,要求的又是哪两项?学生试填。

(2)学生反馈,教师板书。

(3)你发现了什么?

(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

4、用比例性质验证你所写比例是否正确。

5、练习8:12=x:45。

0.5。

x

20。

32。

=

求比例中的未知项,叫做解比例。

如何证明你的解是正确的?

(三)小结:今天这堂课你有什么收获?

三、巩固练习。

1、下面哪几组中的两个比可以组成比例。

4

1

12:24和18:36。

0.4:和0.4:0.15。

14:8和7:4。

5

2

2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。

3、从1、8、0.6、3、7五个数中。

(1)选出四个数,组成比例。

(2)任意选出3个数,再配上另一个数,组成比例。

(3)用所学知识进行检验。

四、实际应用。

不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

同学们,如果你是汪骏强,你准备怎么办?

执教者方艳。

《比例的意义》教案【】

1、通过自主探究,学生能理解比例的基本性质,认识比例的各部分名称。

2、学生能运用比例的基本性质正确判断两个比能否组成比例。

3、激发学生学习兴趣。

1、认识比例的各部分名称。

2、理解比例的基本性质。

会根据比例的基本性质正确判断两个比能否组成比例。

一、创设情境,明确目标。

1、什么叫比例?

2、下面的比能组成比例吗?你是怎样判断的?

2.4:1.6和60:40。

二、导学探究,建立模型。

(一)导学探究,解决问题。

1、导学提示,明确方向。

请自学教材41页例1之前的内容,然后小组合作,完成下面的问题。

1)比例各部分的名称是什么?

3)请自己任意举例,验证你的发现。

4)试着总结比例的基本性质。

2、自主学习,解决问题。

(二)展示交流,建立模型。

1、学生汇报,重点释疑。

1)组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

2)2.4∶1.6=60∶40。

两外项积是:2.4×40=96。

两内项积是:1.6×60=96。

2.4×40=1.6×60。

学生自主学习,解决问题。

各小组代表汇报。

全班交流。

3)学生举例子,验证发现的规律。

2、归纳小结,建立模型。

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

三、练习检测,巩固应用。

1、填空。

1、组成比例的四个数,叫做比例的()。两端的两项叫做比例的(),中间的两项叫做比例的()。

2、在比例里,()等于()。这叫做比例的基本性质。

3、在a:7=9:b中,()是内项,()是外项,a×b=()。

4、一个比例的两个内项分别是3和8,则两个外项的积(),两个外项可能是()和()。

2、判断。

(1)因为6×9=18×3,所以6∶3=18∶9()。

(2)在一个比例里,两个内项互为倒数,两个外项也应互为倒数。()。

3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50。

四、回顾总结,反思提升。

这节课你有什么收获?

先独立完成,再指名汇报,全班交流,集体订正。

先判断,并说明理由。

巩固学生对比例各部分名称的理解。

巩固学生对比例的意义的理解。

巩固学生能正确的应用比例的基本性质判断两个比能否组成比例。

板书设计。

组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

教学反思。

1、在教学比例(特别是分数形式的比例)的各部分名称时,要特别强调哪是外项,哪是内项。

2、本节课充分的体现了学生是学习的主人,提高了学生自主探究的能力。

《比例的意义》教案

1、使学生在理解比例的基本性质的`基础上认识比例的“项”以及”“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质判断两个比能否组成比例。

(一)复习铺垫。

1.上节课我们已经认识了比例?谁能说说什么是比例?

2、哪组中的两个比可以组成比例?把组成的比例写出来.。

(1)3:518:30。

(2)0.4:0.21.8:0.9。

(3)2:89:27。

提问:下面每组中两个比能组成比例吗?为什么?

(二)探究新知。

1、把左边的三角形按比例缩小后得到右边的三角形。(单位:厘米)。

(1)提问:你能根据图中的数据写出比例吗?

(2)两个三角形底的比和高的比相等吗?3:62:4。

两个三角形高的比和底的比相等吗?2:43:6。

每个三角形底和高的比相等吗?3:26:4。

每个三角形高和底的比相等吗?2:34:6。

2、(1)学生自学:组成比例的四个数,就是比例的各个部分,那么比例的各部分的名称是什么呢?请同学门自学课本第43页。

(2)学生汇报:组成比例的四个数叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)。

3:6=2:4。

外项内项内项外项。

(2)学生交流:你能说出其他三个比例的内项和外项是多少吗?

(3)写成分数形式的比例,并说一说各比例外项和内项在哪里?

(4)比较:比例和比有什么区别?

3、(1)要求:观察黑板上的四个比例式,你有什么发现?(学生小组讨论、交流)。

(2)要求:计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以3∶6=2∶4为例,指名来说明.。

内项积是:6×2=12。

外项积是:3×4=12。

6×2=3×4。

5、如果用字母表示比例的四个项,即a:b=c:d,那么这个规律可以表示为()。

6、教师明确:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

板书课题:比例的基本性质。

教师板书:交叉相乘积相等。

8、提问:学习了比例的基本性质有什么用呢?

1、完成试一试。

2、比和比例除了在意义和各部分名称方面不同,你认为它们在什么方面还有什么区别?

3、完成练习十/1、2、3、4。

4、判断:比例的两个外项的积是1,两个内项一定互为为倒数。()。

5、根据4×9=12×3,写出比例式。

这节课你学习了哪些知识?

《比例的意义》教案

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

成正比例的量的特征及其判断方法。

理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

启发引导法。

自主探究法。

课件。

一、定向导学(5分)。

1、已知路程和时间,求速度。

2、已知总价和数量,求单价。

3、已知工作总量和工作时间,求工作效率。

4、导入课题。

今天我们来学习成正比例的量。

5、出示学习目标。

2、能根据正比例的意义判断两种量是不是成正比例。

二、自主学习(8分)。

自学内容:书上45页例1。

自学时间:8分钟。

自学方法:读书法、自学法。

自学思考:

1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

y/x=k(一定)。

(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

2、归类提升。

引导学生小结成正比例的量的意义和关系式。

三、合作交流(5分)。

第46页正比例图像。

1、正比例图像是什么样子的?

2、完成46页做一做。

3、各组的b1同学上台讲解。

四、质疑探究(5分)。

1、第49页第1题。

2、第49页第2题。

3、你还有什么问题?

五、小结检测(8分)。

1、什么是正比例关系?如何判断是不是正比例关系?

2、检测。

1、49页第3题。

六、堂清作业(9分)。

练习九页第4、5题。

板书设计:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

关系式:

y/x=k。

(一定)。

《比例的意义》教案

知识目标:理解比例的意义,掌握组成比例的关键条件。

能力目标:能正确的判断两个比能否组成比例。

情感目标:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

重点解比例的意义,掌握组成比例的关键条件。

难点正确的判断两个比能否组成比例。

教学过程教学预设个性修改。

目标导学复习激趣目标导学自主合作汇报交流变式训练。

一、创设情境,导入新课。

师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)。

师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)。

二、新授(课件出示不同大小的国旗图案)。

(板演,观察到比值相等,教师板书:两个比相等)。

师:那我们就可以将这两个比用等号连接。(教师板书生汇报的两个相等的比)。

教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(生回答,等式;有两个相等的比)。

(教师再强调:一定是比值相等的两个比才能组成比例。)。

师:你还能从四面国旗中找出哪些比例?

(写在练习本上,然后汇报。教师板书)。

师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的.形式吗?怎么写?(口答)。

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?

从形式上区分:比由两个数组成;比例由四个数组成。

从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

拓展应用下面哪些组的两个比可以组成比例?如果能,在()打对号。

10:2和35:42()0、6:0、2和):4和3:():和12:8()。

作业布置做一做。

2、4:1、6=60:40=。

2、4:1、6=60:40。

(或)=。

“反比例意义”教案和反思

《反比例的意义》一课是北师大版六年级下册教学内容,它是在教学《正比例的意义》的基础上的认识,因此在教学设计上,分为三步:

第一,先从复习正比例开始,复习成正比例的条件和特点。

通过“说一说成正比例的两个量是怎样变化”和“判断两个量是否成正比例”的练习,让学生回顾“一种量随着另一种量的变化而相应变化,两种量之间的比值一定。”的正比例的意义。然后引入新课题——反比例。

(从课堂的效果看,感觉在这个环节上的设计还是比较传统化,学生的回答中规中矩,学生的积极性和投入性不是很高,课堂气氛稍显沉闷。课后我想如果这样设计:给出路程,速度,时间,问怎样组合才能符合正比例的要求接着小结,“既然有正比例,那就有…”(让学生说出“反比例”)从而引出课题《反比例》,引出课题后,让学生先根据正比例的意义猜一猜什么是反比例,不管学生猜的对与错,让学生初步感知反比例,这样会不会更能调动起学生的积极性和学生的发散思维,为后面更好的学习作铺垫)。

第二,通过例2与例3两个情境。

(如果按教材的安排先讲例1,觉得会增加难度,让学生不知所以,于是这节课暂不讲例1),让学生了解反比例的意义以及特点,a,路程一定,速度与时间的关系;b,果汁总量一定,分的杯数与每杯的果汁量的关系。然后让学生自己总结出反比例的意义和成反比例的条件:一种量变化,另一种量也随着相反变化,在变化过程中,两种量的乘积一定。

(这个环节的设计,我采用了与教学正比例时同样的.教学程序。考虑到上一节课的研究方法学生已经有了一定的认识,所以采取了放手的形式,引导后就直接把研究和讨论的要求给学生,让学生仿照正比例的学习再次的研究反比例的意义。但在教学过程中,感觉还是扶着学生走,有点放不开。)。

第三,在学生理解反比例意义的基础上,让学生通过练习尝试判断给出的两种量,是否成反比例。

1、在教学的过程中,能注意生活与实际的相结合,通过生活中的两个情境引导学生理解反比例,让学生容易上手,也容易去判断。

2、在提问的方面,基本兼顾了优生和中下生,但感觉面不够广。学生的回答很完整,而且也有条理性,感觉是平常课堂上要求的结果反映。

3、在教学的设计上,条理是清晰的,思路是明确的,但感觉还是有点不够活。如果让学生自己来设计问题,让学生互相提问题,编问题,让学生自己来探索,自己去提问,自己去发现,我想,这样可能会更好的调动起学生的积极性,发挥学生的质疑能力和创造力,效果一定会更好。

文档为doc格式。

反比例的意义参考教案二

(五)字母关系式。

三、巩固练习。

判断下面各题是否成比例?成什么比例?

1.一种圆珠笔。

总价(元)。

1.2。

2.4。

3.6。

4.8。

6

7.2。

支数。

1

2

3

4

5

6

单价(元)。

1

2

4

5

10。

支数。

100。

50。

25。

20。

10。

(1)表中有哪两种相关联的量?

(2)说出几组这两种量中相对应的两个数的比。

(3)每组等式说明了什么?

(4)两种相关的量是否成比例?成什么比例?

2.当速度一定,时间路程成什么比例?

当时间一定,路程和速度成什么比例?

当路程一定,速度和时间成什么比例?

3.长方形的'面一定,长和宽。

4.修一条路,已修的米数和剩下的米数.。

四、课堂总结。

五、课后作业。

(一)判断下面每题中的两种量是不是成正比例,并说明理由.。

1.苹果的单价一定,购买苹果的数量和总价.。

2.轮船行驶的速度一定,行驶的路程和时间.。

3.每小时织布米数一定,织布总米数和时间.。

4.长方形的宽一定,它的面积和长.。

(二)判断下面每题中的两种量是不是成反比例,并说明理由.。

1.煤的总量一定,每天的烧煤量和能够烧的天数.。

2.种子的总量一定,每公顷的播种量和播种的公顷数.。

3.李叔叔从家到工厂,骑自行车的速度和所需时间.。

4.华容做12道数学题,做完的题和没有做的题.。

六、板书设计。

《比例的意义》教案

一、导入新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1、你为什么马上能想到还剩多少呢?

2、是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量、你还能举出一些例子吗?

二、新授教学。

例1、一列火车行驶的时间和所行的路程如下表:

时间(时):路程(千米)。

1:90。

2:180。

3:270。

4:360。

5:450。

6:540。

7:630。

8:720。

1、写出路程和时间的比并计算比值、

(1)2表示什么?180呢?比值呢?

(2)这个比值表示什么意义?

(3)360比5可以吗?为什么?

2、思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律、

3、小结:有什么规律?

《比例的意义》教案

2.通过观察、比较、归纳,提高学生综合概括推理的能力.。

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。

理解正反比例的意义,掌握正反比例的变化的规律.。

理解正反比例的意义,掌握正反比例的变化的规律.。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)。

1

2

3

4

5

6

7

8

……。

路程(千米)。

90。

180。

270。

360。

450。

540。

630。

720。

……。

(1)。

(2)2表示什么?180呢?比值呢?

(3)这个比值表示什么意义?

(4)360比5可以吗?为什么?

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

:时间、路程、速度。

(3)速度是怎样得到的?

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。

3.小结:有什么规律?

:商不变。

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。

工效(个)。

10。

20。

30。

40。

50。

60。

……。

时间(时)。

60。

30。

20。

15。

12。

10。

……。

(1)计算工效和时间的乘积.。

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。

3.小结:有什么规律?(板书:积不变)。

运走的吨数。

10。

20。

30。

40。

剩下的吨数。

90。

80。

70。

60。

总吨数(和不变)。

100。

100。

100。

100。

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程当中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化。

不同点:第一组商不变,第二组积不变,第三组和不变.。

3.分别概括。

4.强调第三组题中两种相关联的量叫做不成比例。

5.教师提问。

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式。

判断下面各题是否成比例?成什么比例?

1.一种圆珠笔。

总价(元)。

1。2。

2。4。

3。6。

4。8。

6

7。2。

支数。

1

2

3

4

5

6

单价(元)。

1

2

4

5

10。

支数。

100。

50。

25。

20。

10。

(1)表中有哪两种相关联的量?

(2)说出几组这两种量中相对应的两个数的比。

(3)每组等式说明了什么?

(4)两种相关的量是否成比例?成什么比例?

2.当速度一定,时间路程成什么比例?

当时间一定,路程和速度成什么比例?

当路程一定,速度和时间成什么比例?

3.长方形的面一定,长和宽。

4.修一条路,已修的米数和剩下的米数.。

(一)判断下面每题中的两种量是不是成正比例,并说明理由.。

1.苹果的单价一定,购买苹果的数量和总价.。

2.轮船行驶的速度一定,行驶的路程和时间.。

3.每小时织布米数一定,织布总米数和时间.。

4.长方形的宽一定,它的面积和长.。

(二)判断下面每题中的两种量是不是成反比例,并说明理由.。

1.煤的总量一定,每天的烧煤量和能够烧的天数.。

2.种子的总量一定,每公顷的播种量和播种的公顷数.。

3.李叔叔从家到工厂,骑自行车的速度和所需时间.。

4.华容做12道数学题,做完的题和没有做的题.。

反比例的意义参考教案二

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。

教学重点。

教学难点。

教学过程。

一、导入新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学。

(一)成正比例的量。

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)。

1

2

3

4

5

6

7

8

……。

路程(千米)。

90。

180。

270。

360。

450。

540。

630。

720。

……。

1.写出路程和时间的比并计算比值.。

(1)。

(2)2表示什么?180呢?比值呢?

(3)这个比值表示什么意义?

(4)360比5可以吗?为什么?

……。

2.思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。

3.小结:有什么规律?

教师板书:商不变。

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。

工效(个)。

10。

20。

30。

40。

50。

60。

……时间(时)。

60。

30。

20。

15。

12。

10。

……。

2.教师提问。

(1)计算工效和时间的乘积.。

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。

3.小结:有什么规律?(板书:积不变)。

(三)不成比例的量。

1.出示表格。

运走的吨数。

10。

20。

30。

40。

剩下的吨数。

90。

80。

70。

60。

总吨数(和不变)。

100。

100。

100。

100。

2.教师提问。

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。

(四)结合三组题观察、讨论、总结变化规律.。

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化。

不同点:第一组商不变,第二组积不变,第三组和不变.。

总结:

《比例的意义》教案

1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

应用比例的意义和性质判断两个比是否成比例。

1、什么叫比?

2、求出下面各比的比值(小黑板)。

12:161/4:1/3和9:124.5:2.710:6。

(3)2:5和80:200能组成比例吗?你是怎样判断的?

(4)完成第45页“做一做”

(1)在一个比例里,有四个数,这四个数分别叫什么名字?

(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

(4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

(5)指导学生完成第一46页“做一做”第1题。

这节课你学到了哪些知识?

创意作业:

有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

x

1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

2、利用比例知识解决实际问题。

3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

一、谈话导入,创设情境:

我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

二、自主探究,学习新知。

1、8厘米。

出示。

6厘米。

4厘米。

3厘米。

(1)根据表中给出的数量写出有意义的比。

(2)哪些比是相关联的?

(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。

教师并指出这些式子就是比例。

2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。

3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

4、写出比值是1/3的两个比,并组成比例。

(二)教学比例的基本性质。

1、比例和比有什么区别?

(1)让学生自己取。

(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。

外项,中间的两项叫做比例的内项。

板书:8:6=4:3。

内项。

外项。

(3)让学生找出自己举的比例的内外项。

()。

12。

2

()。

=

(4)找出分数形式比例的内外项位置又是怎样的?

3、出示【启迪学生思维,展开审美想象】。

(1)这个比例已知的是哪两项,要求的又是哪两项?学生试填。

(2)学生反馈,教师板书。

(3)你发现了什么?

(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

4、用比例性质验证你所写比例是否正确。

5、练习8:12=x:45。

0.5。

x

20。

32。

=

求比例中的未知项,叫做解比例。

如何证明你的解是正确的?

(三)小结:今天这堂课你有什么收获?

三、巩固练习。

1、下面哪几组中的两个比可以组成比例。

4

1

12:24和18:36。

0.4:和0.4:0.15。

14:8和7:4。

5

2

2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。

3、从1、8、0.6、3、7五个数中。

(1)选出四个数,组成比例。

(2)任意选出3个数,再配上另一个数,组成比例。

(3)用所学知识进行检验。

四、实际应用。

不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

同学们,如果你是汪骏强,你准备怎么办?

执教者方艳。

《比例的意义》教案

比例的意义和基本性质 (省义务教材第十二册)

1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

2、利用比例知识解决实际问题。

3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

一、 谈话导入,创设情境:

我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

二、 自主探究,学习新知

(一) 教学比例的意义

1、 8厘米

出示

6厘米

4厘米

3厘米

(1)根据表中给出的数量写出有意义的比。

(2)哪些比是相关联的?

(3)根据以往经验,可将相等的两个比怎样?(用等号连接)

教师并指出这些式子就是比例。

2、 让学生任意写出比例,并让学生用自己的语言描述比例的意义。

3、 教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

4、 写出比值是1/3的两个比,并组成比例。

(二) 教学比例的基本性质

1、 比例和比有什么区别?

2、 认识比例的各部分

(1)让学生自己取。

(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的

外项,中间的两项叫做比例的内项。

板书: 8 : 6 = 4 : 3

内 项

外 项

(3)让学生找出自己举的比例的内外项。

( )

12

2

( )

=

(4)找出分数形式比例的内外项位置又是怎样的?

3、 出示 【启迪学生思维,展开审美想象】

(1) 这个比例已知的是哪两项,要求的又是哪两项?学生试填。

(2) 学生反馈,教师板书。

(3) 你发现了什么?

(4) 指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

4、 用比例性质验证你所写比例是否正确。

5、练习 8 : 12 = x : 45

0.5

x

20

32

=

求比例中的未知项,叫做解比例。

如何证明你的解是正确的?

(三) 小结:今天这堂课你有什么收获?

三、 巩固练习

1、下面哪几组中的两个比可以组成比例。

4

1

12 : 24 和18 : 36

0.4 : 和0.4 : 0.15

14 : 8 和7 : 4

5

2

2、根据18 x 2 = 9 x 4 写出比例。【体会到数学的逻辑美,规律美】

3、从1 、8、0.6、3、7五个数中

(1) 选出四个数,组成比例。

(2) 任意选出3个数,再配上另一个数,组成比例。

(3) 用所学知识进行检验。

四、 实际应用

不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

同学们,如果你是汪骏强,你准备怎么办?

执教者 方 艳

比例的意义

教学目标:

1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学重点:

教学难点:

应用比例的意义和性质判断两个比是否成比例。

教学过程。

一、导入新课。

1、什么叫比?

2、求出下面各比的比值(小黑板)。

二、教学新课。

(3)2:5和80:200能组成比例吗?你是怎样判断的?

(4)完成第45页“做一做”

(1)在一个比例里,有四个数,这四个数分别叫什么名字?

(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

(4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

(5)指导学生完成第一46页“做一做”第1题。

三、巩固练习。

四、课堂小结。

这节课你学到了哪些知识?

创意作业:

有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

比例的意义

1.使学生理解,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙.

理解正反比例的意义,掌握正反比例的变化的规律.

理解正反比例的意义,掌握正反比例的变化的规律.

一、导入  新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学。

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)。

1

2

3

4

5

6

7

8

……。

路程(千米)。

90。

180。

270。

360。

450。

540。

630。

720。

……。

1.写出路程和时间的比并计算比值.

(1) 。

(2) 2表示什么?180呢?比值呢?

(3) 这个比值表示什么意义?

(4) 360比5可以吗?为什么?

……。

2.思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

教师板书:商不变。

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.

工效(个)。

10。

20。

30。

40。

50。

60……时间(时)。

60。

30。

20。

15。

12。

10。

……。

2.教师提问。

(1)计算工效和时间的乘积.

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。

3.小结:有什么规律?(板书:积不变)。

1.出示表格。

运走的吨数。

10。

20。

30。

40。

剩下的吨数。

90。

80。

70。

60。

总吨数(和不变)。

100。

100。

100。

100。

2.教师提问。

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。

(四)结合三组题观察、讨论、总结变化规律.

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化。

不同点:第一组商不变,第二组积不变,第三组和不变.

总结:

3.分别概括。

4.强调第三组题中两种相关联的量叫做不成比例。

5.教师提问。

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式。

三、巩固练习。

判断下面各题是否成比例?成什么比例?

1.一种圆珠笔。

总价(元)。

1.2。

2.4。

3.6。

4.8。

6

7.2。

支数。

1

2

3

4

5

6

单价(元)。

1

2

4

5

10。

支数。

100。

50。

25。

20。

10。

(1)表中有哪两种相关联的量?

(2)说出几组这两种量中相对应的两个数的比。

(3)每组等式说明了什么?

(4)两种相关的量是否成比例?成什么比例?

2.当速度一定,时间路程成什么比例?

当时间一定,路程和速度成什么比例?

当路程一定,速度和时间成什么比例?

3.长方形的面一定,长和宽。

4.修一条路,已修的米数和剩下的米数.

四、课堂总结。

今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.

五、课后作业 。

(一)判断下面每题中的两种量是不是成正比例,并说明理由.

1.苹果的单价一定,购买苹果的数量和总价.

2.轮船行驶的速度一定,行驶的路程和时间.

3.每小时织布米数一定,织布总米数和时间.

4.长方形的宽一定,它的面积和长.

(二)判断下面每题中的两种量是不是成反比例,并说明理由.

1.煤的总量一定,每天的烧煤量和能够烧的天数.

2.种子的总量一定,每公顷的播种量和播种的公顷数.

3.李叔叔从家到工厂,骑自行车的速度和所需时间.

4.华容做12道题,做完的题和没有做的题.

六、

《比例的意义》教案

1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。

2.学会判断成正比例关系的量。

3.进一步培养学生观察、分析、概括的能力。

理解正比例的意义,掌握正比例变化的规律。

请同学口述三量关系:

(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

(学生口述关系式、老师板书。)

今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

幻灯出示:

生:60千米、120干米、180千米……

师:根据刚才口答的问题,整理一个表格。

出示例1。(小黑板)

例1 一列火车行驶的时间和所行的路程如下表。

师:(看着表格)回答下面的问题。表中有几种量?是什么?

生:表中有两种量,时间和路程。

师:路程是怎样随着时间变化的?

师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

(板书:两种相关联的量)

师:表中谁和谁是两种相关联的量?

生:时间和路程是两种相关联的量。

师:我们看一看他们之间是怎样变化的?

生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。

生:路程由480千米变为420千米、360千米……

师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)

生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

(分组讨论)

师:请同学发表意见。

生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

师:根据时间和路程可以求出什么?

生:可以求出速度。

师:这个速度是谁与谁的比?它们的结果又叫什么?

生:这个速度是路程和时间的比,它们的结果是比值。

师:这个60实际是什么?变化了吗?

生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。

师:谁是定量时,两种相关联的量同扩同缩?

生:速度一定时,时间和路程同扩同缩。

师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

(学生口算验证。)

生:都是60千米,速度不变,符合变化的规律,同扩同缩。

师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

师:谁能像老师这样叙述一遍?

(看黑板引导学生口述。)

师:我们再看一题,研究一下它的变化规律。

出示例2。(小黑板)

例2 某种花布的米数和总价如下表:

(板书)

按题目要求回答下列问题。(幻灯)

(1)表中有哪两种量?

(2)谁和谁是相关联的量?关系式是什么?

(3)总价是怎样随着米数变化的?

(4)相对应的总价和米数的比各是多少?

(5)谁是定量?

(6)它们的变化规律是什么?

生:(答略)

师:比较一下两个例题,它们有什么共同点?

生:都有两种相关联的量,一种量变化,另一种量也随着变化。

师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

师:很好。请打开书,看书上是怎样总结的?

(生看书,并画出重点,读一遍意义。)

师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

生:(答略)

师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

1.课本上的“做一做”。

2.幻灯出示题,并说明理由。

(1)苹果的单价一定,买苹果的数量和总价( )。

(2)每小时织布米数一定,织布总米数和时间( )。

(3)小明的年龄和体重( )。

师:今天主要讲的是什么内容?你是如何理解的?

(生自己总结,举手发言。)

师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

(略)

课堂教学设计说明

第一部分:复习三量关系,为本节内容引路。

第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。

总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。

比例的意义

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

教学光盘及多媒体设备、两张照片。

一、复习导入。

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)。

3、化简比:

10:12  25:30  2:8  9:27。

4、求下面比的比值:

0.9:3  1/5:1/15  1/4:1/8  1/8:1/16。

师:请你说说求比的比值的方法。

1、教学例3。

(1)观察、分析:

呈现放大前后的两张长方形照片及相关的数据。图2是图1放大后得到的。

师:你能分别写出每张照片长和宽的比吗?

(2)比较、发现:

比较写出的两个比,提问:这两个比相等吗?你有什么办法证明?

(3)明确概念:

这两个比相等,把比值相等的两个比用等号连起来,写成一种新的式子,如:

6.4:4=9.6:6          6.4/4=9.6/6。

问:这两个等式表示的是怎样的式子?

揭示:像这样的式子就叫做比例。

(4)你能说说什么叫比例吗?

(让学生充分发表意见,在此基础上概括出比例的意义)。

(5)学生读一读。

2、学以致用。

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)。

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、活学活用。

(可以看他们的比值是否相等,也可以把两个比化简,看是不是相同的比)。

三、巩固练习。

1、做练一练,学生独立完成,再逐题说说判断的思考过程。

2、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

3、做练习九第4题。

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

4、做练习九第7题。

(2)分组完成,同时四人板书,再讲评。

四:补充练习:

从12的因数中任意选出4个数,再组成两个比例式:

(  )︰(  )=(  )︰(  )。

(  )︰(  )=(  )︰(  ) 。

五、全课小结。

通过本课的学习,你有哪些收获?

你理解比例的哪些有关知识?能和同学做个交流吗?

六、课堂作业。

补充习题的相应练习。

板书设计:

6.4:4=1.6      9.6:6=1.6。

6.4:4=8:5     9.6:6=8:5。

6.4:4=9.6:6    6.4/4=9.6/6。

表示两个比相等的式子叫做比例。

《比例的意义》教案

知识目标:理解比例的意义,掌握组成比例的关键条件。

能力目标:能正确的判断两个比能否组成比例。

情感目标:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

重点解比例的意义,掌握组成比例的关键条件。

难点正确的判断两个比能否组成比例。

教学过程教学预设个性修改。

目标导学复习激趣目标导学自主合作汇报交流变式训练。

一、创设情境,导入新课

师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)

师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)

二、新授(课件出示不同大小的国旗图案)

(板演,观察到比值相等,教师板书:两个比相等)

师:那我们就可以将这两个比用等号连接。(教师板书生汇报的两个相等的比)

教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(生回答,等式;有两个相等的比)

(教师再强调:一定是比值相等的两个比才能组成比例。)

师:你还能从四面国旗中找出哪些比例?

(写在练习本上,然后汇报。教师板书)

师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(口答)

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?

从形式上区分:比由两个数组成;比例由四个数组成。

从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

拓展应用下面哪些组的两个比可以组成比例?如果能,在()打对号。

10:2和35:42()0.6:0.2和):4和3:():和12:8()

作业布置做一做。

板书设计比例的意义

2.4:1.6=60:40=

2.4:1.6=60:40

(或)=

《比例的意义》教案

1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。

2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。

3、体验获得成功的乐趣,建立学好数学的自信心。

教学难点:应用比例的意义判断两个比能否组成比例。

ppt课件。

请同学们回忆一下上学期我们学过的比的知识,谁能说说:

1、什么叫做比?比的书写形式有哪些?

2、什么叫做比值?

一、情境引入。

同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。

(生齐声说:升旗仪式)。

课件出示:升旗仪式的情景。

你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?

不了解是吧?那老师告诉大家:

课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。

提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?

指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)。

在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。

那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?

那么下面呢我们看一下老师收集到的一些信息。

课件出示不同场合下的国旗。

课件出示:不同场合下的国旗。

提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。

(2)学校的国旗长2.4米,宽1.6米。

(3)教室里面的国旗长60厘米,宽40厘米。

(4)会议桌上的国旗长15厘米,宽10厘米。

那我们现在看到的这些国旗的大小都一样吗?

师小结:在不同的场合的国旗的大小是不一样的。

追问:它们的形状相同吗?(相同)。

尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。

二:探究新知。

下面请同学们拿出练习本,听清要求:

先写出图中国旗长与宽的比然后再求出它的比值。

学生自主计算,教师巡视。

提醒:同学们在计算时,一定要认真。注意计算结果的准确性。

哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答。

根据学生汇报并分类板书。

5:10/3=3/2。

2.4::16=3/2。

60:40=3/2。

15:10=3/2。

大家同意他的计算结果吗?

师:请同学们观察黑板上的计算结果,看看有什么发现。

指名回答。

板书:5:10/32.4:1.6。

来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6。

提问:那么谁能根据这四个5:10/3=3/2。

2.4:1.6=3/2。

60:40=3/2。

15:10=3/2。

相等的比也像老师一样写一个等式呢?

指名回答并根据汇报板书。

我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例?指名回答。

老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)。

大家齐读两遍,开始。

学生齐读。

板书课题。

提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?

指名回答。

教师明确:两个比相等并在这句话的字的下面标上黑点。

表示两个比相等的式子叫做比例。

那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的?对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。

那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。

追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?

(指名回答)。

大家同意吗?

对学生的回答进行评价。

追问:如果不相等的话,能组成比例吗?

教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!

(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??

请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!

班内交流:哪位同学说一说你们小组找出来哪些比例?

展示:2.4:1.6=60:40(长:宽=长:宽)。

1.6:2.4=40:60(宽:长=宽:长)。

2.4:60=1.6:40(长:长=宽:宽)。

这里能组成的比例还有很多,同学们课下再找出其他的比例吧!

(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?”下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!

(2)交流:谁愿意来说一说你们小组讨论的结果?

(生答)。

三、智慧城堡。

师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?

四、谈收获。

五、全课总结:

师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

《比例的意义》教案

3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.。

理解正反比例的意义,掌握正反比例的变化的规律.。

一、导入新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学。

例1.一列火车行驶的时间和所行的路程如下表:

时间(时):路程(千米)。

1:90。

2:180。

3:270。

4:360。

5:450。

6:540。

7:630。

8:720。

1.写出路程和时间的比并计算比值.。

(1)2表示什么?180呢?比值呢?

(2)这个比值表示什么意义?

(3)360比5可以吗?为什么?

2.思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。

3.小结:有什么规律?